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A new approach to the unmeasurable state reconstruction problem for nonlinear
chemical reaction systems in the presence of model uncertainty is proposed. In par-
ticular, a new robust nonlinear state estimation method is developed that explicitly
uses all the available useful information associated with: (i) a dynamic model inevi-
tably characterized by uncertainty, and (ii) a set of sensor measurements in order to
accurately reconstruct other key quantities/variables that cannot be measured on-line
due to physical and/or technical limitations. The problem of interest is conveniently
formulated and addressed within the context of singular partial differential equations
(PDE) theory, leading to a nonlinear state estimator that possesses a state-depen-
dent gain computed through the solution of a system of first-order singular PDEs. A
set of necessary and sufficient conditions is presented that ensure the existence and
uniqueness of a locally analytic solution to the aforementioned system of singular
PDEs, and a series solution method that can be easily implemented via a MAPLE
code is developed. Under these conditions, the convergence of the estimation error or
the mismatch between the actual unmeasurable states and their estimates is analyzed
and characterized in the presence of model uncertainty. Finally, the performance of
the proposed nonlinear etimator and its convergence properties are evaluated in an
illustrative biochemical reaction system that exhibits nonlinear behavior coupled with
parametric uncertainty, and the estimation objective is to accurately reconstruct the
unmeasurable substrate concentration using the available cell mass concentration mea-
surements and the model of the system under consideration.
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1. Introduction

Broad classes of chemical reaction systems exhibit nonlinear dynamic
behavior and are typically modeled by systems of nonlinear differential equa-
tions [1–3]. These dynamic models aim at capturing the actual behavior of the
system of interest as faithfullly as possible, and are now extensively used (sim-
ulated) in order to generate reliable predictions, as well as monitor the system’s
dynamic state for product quality (yield, selectivity, conversion, etc.) and/or pro-
cess safety purposes (reactions with runaway potential, heat generated by exo-
thermic reactions, ignition conditions, etc.) [2–11]. Furthermore, in order to meet
the above objectives and characterize the chemical reaction system’s behavior,
the explicit use of such a dynamic model (in various degrees of complexity and
descriptive accuracy) is often complemented by sensor measurements related to
measurable physical and chemical quantities [4–6]. However, it is a rare occasion
in practice for all variables to be available for direct on-line measurement due
to physical and/or technical limitations pertaining to the current state of sen-
sor technology [12,13]. In most cases there is a substantial need for an accurate
estimation and dynamic reconstruction of key unmeasurable physical and chem-
ical variables, especially when they are used for system performance monitoring
purposes and in the design of advanced process control systems in the chem-
ical industries [4,5,12,13]. For this particular task, a state estimator/observer
or “software sensor” is usually employed and appropriately designed in order
to accurately reconstruct the aforementioned unmeasurable variables. The state
estimator/observer is a dynamic system itself which is driven by the available
on-line sensor measurements, and capitalizes on the available information pro-
vided by the chemical system/process model [13–15]. The observer’s dynamic
equations are then simulated on-line with the aid of a computer code, and offer
accurate estimates of the unmeasurable quantities (hence the name “software or
soft sensors”). In the world of linear systems, both the well-known Kalman fil-
ter [16] and its deterministic analogue realized by Luenberger’s observer [14,17],
offer a full comprehensive solution to the problem. In the case of nonlinear sys-
tems, the traditional practical approach in designing state observers relies on a
local linearization around the reference equilibrium point, and the subsequent
employment of linear observer design methods [13,16]. However, this approach
exhibits only local validity because it overlooks the dominant process nonlinear-
ities, and as reported in [13], might lead to poor performance of the observer.
Consequently, in order to overcome the above type of performance limitations,
nonlinear observers need to be designed that can directly cope with the system
nonlinearities [15]. It should be pointed out however, that the nonlinear observer
design problem poses considerable challenges and has received appreciable atten-
tion in the pertinent body of literature. One could mention the extended Kalman
filter and extended Luenberger observers, whose design is based on a local line-
arization of the system around a reference trajectory and the reconstructed state,
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respectively [4,16]. Undoubtedly, the first systematic approaches for the devel-
opment of a design method for nonlinear observers were reported in [18–20],
where nonlinear coordinate transformations were proposed in order to linearize
the original system followed by linear methods to complete the state observer
design procedure. However, this linearization approach is based upon a set of
rather restrictive conditions, that are only met in a very limited class of systems
[15]. Other important contributions to the nonlinear observer design problem
can be found in [21–31], where a different type of methodological approach is
followed for classes of nonlinear systems exhibiting special structural character-
istics. It should be pointed out, that dynamic models cannot fully capture and
accurately describe the actual system’s behavior in practice, due to the inevitable
modeling errors and/or model uncertainty pertaining for example to unknown or
poorly known kinetic parameter values [4,5,32]. It is therefore quite important
to investigate the possibility of designing observers that are capable of providing
robust and accurate estimates of the unmeasurabe quantities in the presence of
model uncertainty and/or modeling errors [5,32]. In this direction, the present
research work aims at the development of a new approach to the unmeasurable
physical and/or chemical variable reconstruction problem for nonlinear chemical
reaction systems in the presence of model uncertainty by following a technically
different path of analysis. In particular, the problem under consideration is con-
veniently addressed within the context of singular partial differential equations
(PDE) theory, leading to a nonlinear state observer that has a state-dependent
gain computed through the solution of a system of first-order singular PDEs.
A set of necessary and sufficient conditions is presented that ensures the exis-
tence and uniqueness of a locally analytic solution to the aforementioned system
of singular PDEs, and a series solution method is developed that can be eas-
ily implemented via a MAPLE code. Under these conditions, the convergence
of the estimation error (or the mismatch between the actual unmeasurable vari-
ables and their estimates) to zero is analyzed and characterized in the presence
of model uncertainty.

The present paper is organized as follows: In section 2, the necessary mathe-
matical prerequisites are briefly presented, as well as the formulation of the prob-
lem under consideration. The paper’s main results are reported in section 3, where
the requisite analysis on the behavior of the estimation error and the convergence
properties of the proposed state observer in the presence of model uncertainty is
also conducted. In section 4, the performance of the proposed nonlinear observer
is evaluated in an illustrative biochemical reaction system that exhibits nonlin-
ear behavior along with parametric uncertainty, and the estimation objective is to
accurately reconstruct the unmeasurable substrate concentration profile using the
available cell mass concentration measurements and the system’s model. Finally,
some concluding remarks are provided in Section 5.
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2. Mathematical preliminaries—problem formulation

In the present study spatially homogeneous chemical reaction systems are
considered, which are realized by the following M chemical reactions involving
S species:

S∑
j=1

νijAj � 0, (1)

where i = 1, . . . , M and νij denotes the stoichiometric coefficient of the j -th species
Aj in the i reaction. It is assumed that the above chemical reactions take place in a
standard continuous stirred-tank reactor (CSTR) and constitute a constant volume
reacting mixture [3,6]. If ri and �Hi denote the reaction rate and the heat of chem-
ical reaction i, respectively, the dynamics of the system under consideration can be
derived from standard mass and energy balances and mathematically realized by a
system of nonlinear ordinary differential equations (ODEs) describing the evolution
of the various species concentrations, as well as the reacting mixture temperature
inside the chemical reactor [6,33]:

dCj

dt
=

M∑
i=1

νij ri + F

ρV
(C in

j − Cj),

dT

dt
= − 1

ρCp

M∑
i=1

�Hiri + FC in
p

ρV Cp

(T in − T ) + UA

ρV Cp

(T h − T ).

(2)

In the above mathematical representation Cj denotes the concentration of
species j (j = 1, . . . , S), T the reactor temperature, V , Cp, ρ, the volume, heat
capacity and density of the reacting mixture respectively, F denotes the mass
flowrate, U and A denote the heat transfer coefficient and area, respectively, T h

denotes the temperature of the heat transfer medium, and finally the superscript
“in” denotes quantities associated with the inlet stream. System (2) can be math-
ematically represented in a more compact form if vectorial/matrix notation is
used. Indeed, let us collectively define the vector of variables:

x =




C1

·
·
·

CS

T


 ,

that is often called the state vector (equivalently the vector of state variables),
since it uniquely determines and characterizes the dynamic state of the chemical
reaction system of interest as its evolution is deterministically governed by the
system of ODEs (2) [34–36]. Furthermore, one may define:



N. Kazantzis and R.A. Wright / On the nonlinear dynamic state reconstruction problem 173

(i) the M-dimensional reaction rate vector:

r(x) =




r1

·
·
·

rM


 ,

where each reaction rate ri is typically expressed as follows: ri =
ki(T )r̃i(C), with ki(T ) being the temperature-dependent kinetic rate
constant [6,33].

(ii) the (S + 1) × M-dimensional generalized stoichiometric matrix [33]:

N(x) =




ν11 . . . νM1

· . . . ·
· . . . ·
· . . . ·

ν1S . . . νMS
−�H1
ρCp

. . . −�HM

ρCp




(iii) the vector function: J (x), J : RS+1 −→ RS+1 that captures all remain-
ing terms in (2) associated with mass flow and heat transfer [6,33]:

J (x) =




F
ρV

(C in
1 − C1)

·
·
·

F
ρV

(C in
S − CS)

FC in
p

ρV Cp
(T in − T ) + UA

ρV Cp
(T h − T )




.

Using the above notation, system (2) attains the following form:

dx(t)

dt
= N(x(t))r(x(t)) + J (x(t)) ≡ F(x(t)), (3)

where F(x), F : RS+1 −→ RS+1 is used to denote the vector function appear-
ing on the right hand-side of the above system of ODEs. In the context of the
present study, it is assumed that x ∈ X ⊂ RS+1, where X is a compact subset of
the state space (it is therefore implicitly assumed that only stable dynamical sys-
tems (3) are considered with bounded state space trajectories x(t) contained in
X, otherwise, it is presupposed that a controller has been synthesized to render
the controlled chemical system/process stable), and that F(x) is a real analytic
vector function on X. For the sake of simplicity and without loss of generality,
the origin x0 = 0 is assumed to be an equilibrium point of (3). Indeed, in the
case of a non-zero equilibrium point: x0 �= 0, a simple linear transformation (axis
shift) : x̃ = x − x0, with F̃ (x̃) ≡ F(x̃ + x0), maps the above non-zero equilibrium
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point to the origin in the new coordinate system, where the system dynamics is
represented in a formalistically similar manner as follows:

dx̃(t)

dt
= F̃ (x̃(t)). (4)

In light of the above remark, the original notation will be retained for simplicity.
As it is often the case in practice, the above dynamic model can not ade-

quately capture and faithfully describe the behavior of the actual system over all
possible regimes of dynamic behavior due to model uncertainty that is inevita-
bly introduced in modeling efforts. For example, one may envision cases where
kinetic parameters in chemical reaction systems are unknown or poorly known,
and thus responsible for an element of uncertainty in the dynamic description of
the system under consideration [3–6,13]. Mathematically, this uncertainty is very
often represented in the following fashion:

dx(t)

dt
= F(x(t)) = f (x(t)) + εg(x(t)), (5)

where the F(x) vector function is now partitioned into two terms: F(x) = f (x)+
εg(x). The first term: f (x), with f (0) = 0, is the “known” part of the dynamic
model (or equivalently its nominal part), and the second one: εg(x) represents
the model uncertainty or modeling error. Please notice, that ε > 0 is typically a
small number (perturbation parameter) and even though we do not know g(x)

exactly, we do have some knowledge about it, for example some type of bound.
Indeed, it is often assumed that the perturbation term g(x) is bounded on X and
satisfies the following condition:

||g(x)||�M, (6)

where M > 0 and x ∈ X.
Let us now assume that m < (S + 1) quantities: y ∈ Rm, y = [y1, . . . , ym]

are available for direct on-line measurement and mathematically represented as
functions of the state variables: y = h(x), where h : RS+1 −→ Rm is a
real analytic vector function. Even though this is a rather generic representa-
tion, very often y is a subset of the state variables that can be measured with
the aid of current sensor technology listed as: y = [x1, . . . , xm], whereas the
rest (S + 1 − m) variables: [xm+1, . . . , xS+1] are unmeasurable and need to be
accurately reconstructed for product quality, process safety and/or other perfor-
mance monitoring purposes. For example, it is easier to obtain fast and reliable
temperature measurements than concentration measurements , or cell mass con-
centration measurements than substrate concentration and enzymatic concentra-
tion measurements in biochemical reaction systems [3–6,12,13].
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Suppose now that for the “known” nominal dynamic model accompanied
by the sensor measurement signals:

dx(t)

dt
= f (x(t)),

y(t) = h(x(t)),

(7)

one can design a state estimator or observer:

dx̂(t)

dt
= w(x̂(t), y(t)), (8)

which is a dynamical system itself, driven by the available sensor measurements
y(t) and capable of providing accurate estimates x̂(t) of the state vector x(t), in
the sense that the estimation error: e(t) = x(t) − x̂(t) (or the mismatch between
the state x and its estimate x̂) converges to zero asymptotically: ||e(t)|| = ||x(t)−
x̂(t)|| −→ 0, as t −→ ∞. It is therefore understood, that the convergence
properties of the above state estimator or state observer are dictated by the
choice of the vector function w(x̂, y) on the right-hand-side of the observer’s
dynamic equations (8). This particular choice should enforce a decaying over
time dynamic profile for the estimation error e(t), and preferrably assign stable,
smooth and fast dynamic modes to the estimation error dynamics. Equivalently
stated, the choice of w(x̂, y) should induce the desirable speed/rate of conver-
gence of the state estimate x̂ to the actual state x. In light of the above remarks,
an important question naturally arises: Would the aforementioned observer still
offer a reliable state vector estimate x̂ that converges to the actual state x in the
presence of model uncertainty g(x), and therefore exhibit convergence proper-
ties that are robust to modeling errors and uncertainty? Mathematically stated,
under what conditions the estimation error dynamics is structurally stable in the
presence of the perturbation term εg(x), or equivalently, the stability of the error
dynamics is robust in the presence of model uncertainty/error? The study of this
problem is the subject of section 3.

3. Main results

At this point it would be methodologically appropriate to first consider and
study the state estimator design problem for the nominal unperturbed system (7)
as presented in [37]. This is necessary, since it will form the basis for the ensu-
ing framework of analysis where the robustness properties of the proposed state
estimation method will be examined in the presence of model uncertainty for



176 N. Kazantzis and R.A. Wright / On the nonlinear dynamic state reconstruction problem

nonlinear chemical reaction systems. At this point, let the Jacobian matrix F of
the f (x) vector function evaluated at x = 0 be denoted as: F = (∂f /∂x)(0), and
by H the m× (S +1) matrix: H = (∂h/∂x)(0). For the nominal unperturbed sys-
tem (7), we consider a nonlinear state observer of the following form:

dx̂(t)

dt
= w(x̂(t), y(t)) = f (x̂(t)) + L(x̂(t))(y(t) − h(x̂)(t)), (9)

where x̂ ∈ RS+1 is the state estimate. The above observer is comprised of two
terms: the first one: f (x̂) is a replica of the nominal system dynamics (7), and
the second term: L(x̂(t))(y(t)−h(x̂)(t)) (which drives the observer dynamics (9))
is a “feedback term” that accounts for the mismatch between the actual sensor
measurement y(t) and the estimate of the measured quantities h(x̂(t)) multiplied
by a state-dependent “gain” L(x̂). Let us now compute the gain map L(x) as fol-
lows:

L(x) =
[
∂T

∂x
(x)

]−1

B, (10)

where T (x), T : RS+1 −→ RS+1 is the solution to the following associated system
of first-order partial differential equations (PDEs):

∂T

∂x
f (x) = AT (x) + Bh(x),

T (0) = 0
(11)

with A, B being constant matrices of appropriate dimensions. Please notice, that
under the above choice of the nonlinear gain L(x), the state observer (9) induces
the following linear error dynamics in the transformed coordinates z = T (x):

dez

dt
= d

dt
(z − ẑ) = d

dt
(T (x) − T (x̂)) = ∂T

∂x

dx

dt
− ∂T

∂x̂

dx̂

dt

= ∂T

∂x
f (x) − ∂T

∂x̂
{f (x̂) + L(x̂)(y − h(x̂))}

= AT (x) + Bh(x) − AT (x̂) − Bh(x̂) − Bh(x) + Bh(x̂)

= A(T (x) − T (x̂)) = A(z − ẑ) = Aez. (12)

Therefore, if in the above linear error dynamics the fundamental matrix A is cho-
sen to have stable eigenvalues (Hurwitz matrix), these eigenvalues will directly
regulate the exponential rate of decay of the estimation error: ez(t) = z(t) −
ẑ(t) = T (x(t))) − T (x̂(t) to zero (eigenmodes of the estimation error dynamics
(12)). Notice, that invertibility of the matrix ∂T /∂x (or the transformation map
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T (x)) would imply that the state estimate x̂ asymptotically approaches the actual
state x.

To ensure the feasibility and viability of the observer design (9), a set of neces-
sary and sufficient conditions needs to be derived, under which the associated system
of PDEs (11) admits a unique and invertible solution. Please notice, that in this case
the proposed nonlinear observer (9) would exhibit the desirable convergence prop-
erties, or equivalently, it would generate state estimates that asymptotically converge
to the actual unmeasurable states. Furthermore, and from a practical point of view,
the use of the observer (9) requires the development of a comprehensive solution
method for the system of PDEs (11). First, attention should be drawn to the fact
that the above system of first-order PDEs is of particular structure and admits a
common principal part that consists of the components fi(x), (i = 1, . . . , S + 1)

of the vector function f (x) [38]. Furthermore, notice that the principal part van-
ishes at x = 0 due to the equilibrium condition, and thus, the origin becomes a
characteristic (singular) point for the system of PDEs (11) [38]. As a consequence,
the well-known existence and uniqueness Cauchy–Kovalevskaya theorem can not
be invoked because the pertinent conditions are not satisfied for the singular system
of PDEs (11) [38], and inevitably one needs to resort to methods and results from
singular PDE theory. However, it can be proven that under a set of rather generic
necessary and sufficient conditions the above system of singular PDEs (11) admits a
unique locally analytic and invertible solution in the neighborhood of the reference
equilibrium point x = 0 (Appendix; for detailed proofs please see [37]).

Let us now consider the problem of the development of a solution method
for the system of PDEs (11). We would first like to point out, that the method
of characteristics for the system of first-order PDEs (11) cannot be applied due
to the singularity at the reference equilibrium point. However, as previously
mentioned, the functions f (x), h(x), as well as the solution T (x) are all locally
analytic. Therefore, the proposed solution method is based on a multivariate
Taylor series expansion of f (x), h(x) and the unknown solution T (x), followed
by a procedure that equates the Taylor coefficients of both sides of the system of
PDEs (11). As a result, recursion algebraic formulas are generated that are lin-
ear with respect to the Taylor coefficients of the unknown solution, and in par-
ticular, one can calculate the N -th order Taylor coefficients of T (x), given the
Taylor coefficients of T (x) up to the order N − 1 already calculated in previous
recursive steps. The above linear recursive formulas admit a compact mathemati-
cal represenation if tensorial notation is used. In particular, the same notational
rules established in [37] will be considered:

(a) The entries of a constant matrix A are represented as a
j

i , where the sub-
script i refers to the corresponding row and the superscript j to the cor-
responding column of the matrix.
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(b) The partial derivatives of the µ component fµ(x) of a vector field f (x)

at x = 0 are denoted as follows:

f i
µ = ∂fµ

∂xi

(0), f ij
µ = ∂2fµ

∂xi ∂xj

(0), f ijk
µ = ∂3fµ

∂xi ∂xj ∂xk

(0),

etc.

(c) The widely-used summation convention is considered, according to
which repeated upper and lower tensorial indices are summed up.

Please notice, that under the above notational convention, the l-th compo-
nent Tl(x) of the unknown solution T (x) of the system of PDEs (11) can be
represented in a multivariate Taylor series form in the following fashion:

Tl(x) = 1
1!

T
i1
l xi1 + 1

2!
T

i1i2
l xi1xi2 + · · · + 1

N !
T

i1i2...iN
l xi1xi2 . . . xiN + · · · (13)

Similarly functions f (x), h(x) are expanded in Taylor series, and then inserted
into PDEs (11). The next step, involves the procedure of matching the Taylor
coefficients of the same order, that eventually leads to the following formula for
the N -th order Taylor coefficients of the unknown solution T (x) [37]:

N−1∑
L=0

∑
(N

L)

T
µi1...iL
l f iL+1...iN

µ = a
µ

l T i1...iN
µ + b

µ

l hi1...iN
µ (14)

with i1, . . . , iN = 1, . . . , S + 1 and l = 1, . . . , S + 1. Please notice, that the sec-
ond summation symbol in (14) requires summing up the relevant quantities over

the
(

N

L

)
possible combinations of the indices (i1, . . . , iN). As mentioned ear-

lier, equations (14) represent a set of linear algebraic equations with respect to
the unknown coefficients T i1,... ,iN

µ . This is precisely the mathematical reason, that
allows the proposed series solution method for the system of singular PDEs (11)
to be easily implemented through a symbolic software package such as MAPLE.
Indeed, a simple MAPLE code has been developed that automatically calculates
the various higher-order Taylor coefficients of the unknown solution of (11).

Remark 1. The proposed state observer (9) is based on the explicit construction
of an invariant manifold map z = T (x) for the augmented system:

dx(t)

dt
= f (x(t)),

dz(t)

dt
= Az(t) + Bh(x(t)),

(15)

comprised of the original nominal dynamical system (7) and the observer
dynamics expressed in the transformed coordinates. Indeed, it is easy to show
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that the invariance requirement is mathematically translated into the system of
invariance PDEs (11) that the map z = T (x) ought to satisfy [10,34–36,39,40].
Finally, it should be pointed out, that the augmented system (15) falls within the
class of the so-called skew-product systems [41], where the driving system repre-
sents the original system dynamics that drives (through the sensor measurements
y(t) = h(x(t))) the state observer dynamics as shown in (15).

Remark 2. Under the assumptions stated, and in the linear case, where f (x) = Fx

and h(x) = Hx, the associated system of singular PDEs (11) admits a unique solu-
tion: T (x) = T x, with T being the invertible unique solution of the Sylvester-type
matrix equation [14,42]: T F −AT = BH . In this case, the proposed observer has a
constant gain: L = T −1b, and coincides with the standard Luenberger observer [17].

Let us now examine the convergence properties of the state observer (9) in
the presence of the model uncertainty or modeling error g(x). From a mathemat-
ical point of view, we would like to investigate the possibility of the estimation
error dynamics induced by the proposed observer (9) to be structurally stable in
the presence of model uncertainty g(x). Indeed, as shown earlier, observer (9)
which was designed on the basis of the fully “known” nominal model (7) induces
estimation error dynamics with assignable rate of decay described by (12). How-
ever, when model uncertainty g(x) is taken into account the estimation error
dynamics in the transformed coordinates: ez = z − ẑ = T (x) − T (x̂) becomes

dez

dt
= ∂T

∂x

dx

dt
− ∂T

∂x̂

dx̂

dt

= ∂T

∂x
{f (x) + εg(x)} − ∂T

∂x̂
{f (x̂) + L(x̂)(y − h(x̂))}

= AT (x) + Bh(x) + ε
∂T

∂x
g(x) − AT (x̂) − Bh(x̂) − Bh(x) + Bh(x̂)

= Aez + ε
∂T

∂x
(x)g(x). (16)

Please notice that the above error dynamics is not linear anymore due to
model uncertainty and the presence of the nonlinear term ε(∂T /∂x)(x)g(x). In
particular, it can be mathematically characterized as a perturbed dynamical sys-
tem comprised of a nominal linear dynamical system with a stable fundamen-
tal matrix A induced by the design of the state observer (9), and a perturbation
term ε(∂T /∂x)g(x). Equation (16) yields [43]:

ez(t) = exp(At)ez(0) +
∫ t

0
exp(A(t − τ))

[
ε
∂T

∂x
(x(τ ))g(x(τ ))

]
dτ (17)

Furthermore, since A has stable eigenvalues (Hurwitz matrix), there exist positive
constants β > 0, γ > 0 such that [42,43]:

|| exp(At)|| � γ exp(−βt). (18)
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In light of inequality (18), the following bound on the estimation error can be
established:

||ez(t)|| � || exp(At)||||ez(0)|| +
∫ t

0
|| exp(A(t − τ))||

{
ε||∂T

∂x
(x(τ ))||||g(x(τ))||

}
dτ

� γ exp(−βt)||ez(0)|| + γ εLM

∫ t

0
exp(−β(t − τ)) dτ

� γ exp(−βt)||ez(0)|| + ε
γLM

β
(1 − exp(−βt))

= γ ||ez(0)|| exp(−βt) − ε
γLM

β
exp(−βt) + ε

γLM

β
, (19)

where ez(0) is the initial estimation error of the unmeasurable states and
||∂T /∂x|| � L in the compact set X. On the basis of result (19) the following
important remarks can be made:

(i) In the absence of model uncertainty/modeling error: g(x) ≡ 0, the esti-
mation error in the transformed coordinates decays to zero: ||ez(t)|| =
||ẑ(t) − z(t)|| = ||T (x̂(t)) − T (x(t))|| −→ 0, as t −→ ∞. Invoking the
analyticity and local invertibility property of the coordinate transforma-
tion map z = T (x), one readily establishes convergence of the estima-
tion error expressed in the original coordinates: ||e(t)|| = ||x̂−x|| −→ 0,
as t −→ ∞.

(ii) Notice that due to the presence of the model uncertainty term g(x) the
estimation error does not converge asymptotically to zero even in the
presence of zero initial estimation error: ez(0) = 0. However, as can be
easily inferred from (19), the inevitable offset is of order O(ε). Equiva-
lently stated, the estimation error will be ultimately bounded by a small
bound if the perturbation/model uncertainty term is itself bounded by
a small bound. In particular, inequality (19) derived for the bound of
the estimation error suggests that it is directly proportional to the mag-
nitude of the model uncertainty term.

Within the context of the present study, the issue of time-varying process
parameters or model inputs (such as catalyst deactivation, enzymatic degrada-
tion, certain types of model uncertainty associated with the values of kinetic rate
constants, etc.) appearing in the dynamic equations of the nominal system (7)
can be addressed as well. Indeed, this type of situation is frequently encountered
in practice and is mathematically realized by the following state-space represen-
tation for the nominal nonlinear (bio)chemical reaction system [1,3,28,32,43]:

dx

dt
= f (x) = f0(x) + f1(x, u(t)),

y = h(x),
(20)
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where u ∈ Rp is now the vector of the time-varying model input variables, f0 :
RS+1 −→ RS+1, f1 : RS+1 × Rp −→ RS+1 are real analytic vector functions in
the domain X, with L(u) being a Lipschitz constant for f1 on X. The first step
in our analysis is to ensure asymptotic stability of the estimation error dynamics
(as the state estimate converges to the actual state) for the nominal system (20)
in the presence of the time-varying model input variables u(t). Please notice, that
once asymptotic stability is established for the nominal input-driven system (20),
taking into account and integrating into the analysis framework the perturbatory
model uncertainty term εg(x) as well:

dx

dt
= f (x) + εg(x) = f0(x) + f1(x, u(t)) + εg(x),

y = h(x),
(21)

becomes quite straightforward by following exactly the same methodological
steps outlined earlier and omitted here for brevity. Therefore, in light of the
above remark, the focus is now placed on the stability (convergence) proper-
ties of the estimation error dynamics induced in this case by the following state
observer:

dx̂(t)

dt
= f0(x̂(t)) + f1(x̂(t), u(t)) + L(x̂(t))(y(t) − h(x̂)(t)), (22)

where the observer gain is given by

L(x) =
[
∂T

∂x
(x)

]−1

B,

with T (x) being the solution of the system of singular PDEs (11). Indeed, the
above observer gives rise to the following estimation error ez = z − ẑ = T (x) −
T (x̂) dynamics:

dez

dt
= −∂T

∂x̂

{
f0(x̂) + f1(x̂, u) +

[
∂T

∂x̂
(x̂)

]−1

B(y − h(x̂))

}

+∂T

∂x
(f0(x) + f1(x, u)) = Aez + 
(x, u) − 
(x̂, u), (23)

where 
(x, u) = (∂T /∂x)(x)f1(x, u). Consider now the quadratic function:

V (ez) = eT
z P ez, (24)

where P is the unique positive-definite solution to the following Lyapunov
matrix equation [14]:

AT P + PA = −2Q (25)
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with A being Hurwitz and Q an arbitrarily selected positive-definite matrix. Let
us now calculate the time-derivative of the above quadratic function along the
trajectories of the error dynamics (24):

dV

dt
=

(
dez

dt

)T

P ez + eT
z P

dez

dt

= eT
z (AT P + PA)ez + 2eT

z P [
(x, u) − 
(x̂, u)]
= −2eT

z Qez + 2eT
z P [
(x̂ + e, u) − 
(x̂, u)].

(26)

From (27) one easily obtains:

dV

dt
� − 2eT

z Qez + 2L(u)||P ||||e||||ez||, (27)

where e = x − x̂ is the estimation error expressed in the original coordinate
system. Invoking the local analyticity and invertibility of T (x) in the com-
pact domain X, it is inferred that there exists a positive number δ such that:
||e|| � δ||ez||, and therefore equation (28) yields:

dV

dt
� − 2eT

z Qez + 2δL(u)||P ||||ez||2. (28)

Notice, that the norm of the symmetric positive-definite matrix P is given by
[44]:

||P || = λmax(P ), (29)

where λmax(P ) is the maximum eigenvalue of matrix P , and for the positive-defi-
nite matrix Q the following inequality holds [44]:

eT
z Qez � λmin(Q)||ez||2, (30)

where λmin(Q) is the minimum eigenvalue of matrix Q. In light of equations (29)
and (30), one now obtains

dV

dt
� (−2λmin(Q) + 2L(u)δλmax(P ))||ez||2. (31)

Therefore, if matrix Q is selected such that

λmin(Q)

λmax(P )
> L(u)δ (32)

the time-derivative of the positive-definite quadratic function (25) becomes nega-
tive, the function V (e) qualifies as a Lyapunov function for the estimation error
dynamics (24), and therefore, by invoking Lyapunov’s theorem [43], asymptotic
stability of the estimation error dynamics (24) is readily established.
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The above results suggest that the proposed state observer is capable of pro-
viding accurate and robust estimates of the unmeasurable state variables in the
presence of suitably modeled and rather broad classes of modeling errors/model
uncertainties. The performance, convergence properties and robustness of the
proposed observer will be evaluated in the next section’s illustrative case study.

4. Illustrative example: A nonlinear biochemical reaction system

A biochemical reaction system is considered where cells are being grown
through the consumption of a substrate in a typical continuous stirred-tank bio-
logical reactor [4,7]. In particular, under the assumption of constant volume, the
following dynamic model can be obtained [4,7]:

dX

dt
= µ(X, S)X − F

V
X,

dS

dt
= −µ(X, S)X

Y
+ F

V
(SF − S),

(33)

where X, S are the cell-mass and substrate concentrations respectively, µ(X, S)

the specific growth rate, Y the yield coefficient, F the feedrate of the substrate,
SF the feed concentration and V the reactor volume. Under the assumption of
Contois kinetics the specific growth rate assumes the following form [7]:

µ(X, S) = K1S

K2X + S
, (34)

where K1, K2 are kinetic constants, and thus, the dynamic model (33) takes the
form:

dX

dt
= K1XS

K2X + S
− F

V
X,

dS

dt
= − K1XS

Y(K2X + S)
+ F

V
(SF − S).

(35)

The following values are assigned to the model parameters: K1 = 1 (min−1), K2 = 1,
Y = 1, F/V = 0.08 (min−1), SF = 0.1 (kg m−3). Moreover, notice that in this
case the equilibrium point is: (X0, S0) = (0.092, 0.008). Let us now assume that the
value of the K1 kinetic constant is not fully known, but uncertain. It is assumed that:
K1 = K0

1 + ε sin(t), where K0
1 = 1 (min−1) is a known nominal value and ε sin(t)

represents a bounded time-varying term reflecting the uncertainty that character-
izes the numerical value of K1, with ε > 0 being a small positive constant. Given
the structure of the above dynamic model (35) and denoting the state variables by
x1 = X > 0, x2 = S > 0, it can be easily deduced that the perturbation term is given
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by the following expression:

g(x1, x2) =
[

sin(t) x1x2
x1+x2− sin(t) x1x2
x1+x2

]
. (36)

Furthermore, it can be easily proven that the nominal system is asymptotically sta-
ble around the equilibrium point of interest (through a simple calculation of the ei-
genvalues of the Jacobian matrix associated with the linearized system around the
equilibrium point), and standard Lyapunov techniques can offer an estimate of the
stability region and a compact set in state space: X = {x = (x1, x2) ∈ R2 : ||x|| =√

x2
1 + x2

2 < r} within which the system’s trajectory remains confined (the radius r

depends of course on the initial conditions: ||x(0)|| < l) [43]. Therefore, one obtains
the following bound for g(x):

||g(x)|| = ||g(x1, x2)|| =
√

2
| sin(t)|x1x2

x1 + x2

�
√

2
x1x2

x1 + x2
�

√
2x1

�
√

2
√

x2
1 + x2

2 =
√

2||x|| <
√

2r = M (37)

for ||x|| < r.
The objective is to estimate the unmeasured substrate concentration x̂2(t),

by using on-line measurements of the cell-mass concentration y(t) = h(x(t)) =
x1(t) [44] in the presence of model uncertainty g(x) considered above. In order to
accomplish the task of estimating x̂2(t), the nonlinear state observer (9) is pro-
posed. According to the methodology developed in Section 3, the following sys-
tem of first-order singular PDEs needs to be solved first:

∂w1

∂x1

(
x1x2

x1 + x2
− 0.08x1

)
+ ∂w1

∂x2

(
− x1x2

x1 + x2
− 0.08x2 + 0.008

)
= a11w1 + a12w2 + b1x1,

∂w2

∂x1

(
x1x2

x1 + x2
− 0.08x1

)
+ ∂w2

∂x2

(
− x1x2

x1 + x2
− 0.08x2 + 0.008

)
= a21w1 + a22w2 + b2x1, (38)

w1
(
x0

1 , x
0
2

) = w1(0.092, 0.008) = 0,

w2
(
x0

1 , x
0
2

) = w2(0.092, 0.008) = 0.

The following parameters have been selected for matrices {A, B}:

A =
[

a11 a12

a21 a22

]
=

[−0.1 0
0 −0.2

]
, (39)
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and

B =
[

b1

b2

]
=

[
1
2

]
. (40)

Under the above choice of design parameters the system of singular PDEs (38)
admits a unique locally analytic and invertible solution T (x). A series solution of
the above system of PDEs (38) is then sought around the equilibrium point of
interest (x0

1 , x
0
2) = (0.092, 0.008). The Taylor coefficients of the unknown solu-

tion T (x1, x2) are automatically computed by using a simple MAPLE code. In
particular, a third-order truncation T [3](x1, x2) of the Taylor series expansion of
T (x1, x2) is considered and given by

T
[3]

1 (x1, x2) = 10.1224(x1 − 0.092) − 1.6887(x2 − 0.008)

+ 0.1254(x1 − 0.092)2 − 3.4561(x1 − 0.092)(x2 − 0.008)

+ 29.8104(x2 − 0.008)2 − 1.2314(x1 − 0.092)3

+ 32.0972(x1 − 0.092)2(x2 − 0.008)

− 191.0671(x1 − 0.092)(x2 − 0.008)2

− 399.6450(x2 − 0.008)3

+ O(|x1 − 0.092|4, |x2 − 0.008|4) (41)

and

T
[3]

2 (x1, x2) = 10.0613(x1 − 0.092) − 0.7690(x2 − 0.008)

+ 0.0572(x1 − 0.092)2 − 1.4475(x1 − 0.092)(x2 − 0.008)

+ 9.1546(x2 − 0.008)2 − 1.7181(x1 − 0.092)3

+ 13.6812(x1 − 0.092)2(x2 − 0.008)

− 73.4817(x1 − 0.092)(x2 − 0.008)2

− 110.8042(x2 − 0.008)3

+ O(|x1 − 0.092|4, |x2 − 0.008|4). (42)

On the basis of the above third-order polynomial approximation T [3](x1, x2) of
the actual solution T (x) of (38) the proposed nonlinear observer (9) was simu-
lated for different values of ε in order to obtain estimates of the unmeasurable
state variable x2(t) = S(t) (figures 1–3). In particular, figure 1 depicts the actual
state S(t) and its estimate for a value of ε = 0.1, showing the satisfactory conver-
gence properties of the proposed observer, as the state estimate converges nicely
to the actual substrate concentration profile. The value of ε is then increased
to ε = 0.3 for the simulation results shown in figure 2. As was theoretically
predicted in earlier sections, the impact of a greater uncertainty associated with
the numerical value of the kinetic constant K1 on the convergence properties of
the proposed observer is now becoming more visible. However, convergence of
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Figure 1. Estimation of substrate concentration for ε = 0.1.
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Figure 2. Estimation of substrate concentration for ε = 0.3.

the observer’s state estimate to the actual process state S(t) remains still fairly
good. In figure 3 simulation results are shown for a higher degree of uncertainty
on K1 and for a value of ε = 0.9. Pleasse notice, that the impact of the model
uncertainty is now substantial, performance deterioration of the observer (9) as
indicated in the above theoretical investigations becomes noticeable, leading to
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Figure 3. Estimation of substrate concentration for ε = 0.9.

an apparent offset between the observer’s state estimate and the actual substrate
concentration profile.

5. Concluding remarks

In the present study a new approach to the unmeasurable state reconstruc-
tion problem for nonlinear chemical reaction systems in the presence of model
uncertainty is proposed. The proposed nonlinear state observer possesses a state-
dependent gain which is computed from the solution of a system of first-order
singular partial differential equations (PDEs). Furthermore, a set of conditions
is provided that ensure the existence and uniqueness of a locally analytic and
invertible solution to the aforementioned system of singular PDEs, and a series
solution method is developed that can be easily implemented through a MAPLE
code. Under these conditions, the convergence of the estimation error to zero
is analyzed in the presence of model uncertainty. Finally, the performance of
the proposed state observer was evaluated in an illustrative biochemical reaction
system.
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A. Appendix: Existence and uniqueness conditions for the solution of the
system of singular PDEs (11)

Under the following set of conditions, the system of first-order singular
PDEs (11) admits a unique locally analytic and invertible solution z = T (x) in
a neighborhood of the origin [37]:

Condition 1. The Jacobian matrix F has eigenvalues ki(i = 1, . . . , S + 1) with

0 �∈ co{k1, k2, . . . , kS+1}, (43)

where co stands for the convex hull of a set. Equivalently stated, the spectrum
of F belongs to the Poincaré domain [45]. It should be pointed out, that this
assumption has been recently relaxed in [28], where existence and uniqueness of
a solution to the system of PDEs (11) is proved under the rather generic assump-
tion that the spectrum of F lies wholly in the Siegel domain [28,45].

Condition 2. The following (m(S + 1)) × (S + 1) matrix O:

O =




H

HF
...

HFS


 (44)

has rank S + 1.

Condition 3. The following (S + 1) × (m(S + 1)) matrix C:

C = [
B AB . . . ASB

]
(45)

has rank S + 1. It can be shown that Conditions 2 and 3 are crucial in order to
ensure local invertibility of the unknown solution T (x) of (11) [37].

Condition 4. The eigenvalues ki, (i = 1, . . . , S + 1) of F are not related to the
eigenvalues λi, (i = 1, . . . , S + 1) of A through any equation of the type:

S+1∑
i=1

miki = λj (46)
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(j = 1, . . . , S + 1), where all the mi are non-negative integers that satisfy the
condition:

S+1∑
i=1

mi > 0. (47)

Conditions 1 and 4 are necessary for the existence and uniqueness of the
unknown solution T (x) of (11). In particular, Condition 1 ensures the uniform
convergence of the formal power series representation of the unique solution
T (x), and hence, its analyticity property [37].
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